International Journal of Technology

Effect of Oxidants in the Utilization of Polysulfone Hollow Fiber Membrane Module as Bubble Reactor for Simultaneously Removal of NO_x and $SO₂$

Sutrasno Kartohardjono^{1*}, Eva Fathul Karamah¹, Adinda Puspa Hayati¹, Grace Natalie Talenta¹, Thoriq Ahmad Ghazali¹, Woei Jye Lau²

¹*Process Intensification Laboratory, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok 16424*

²*Advance Membrane Technology Research Center, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia*

Abstract. Air pollution has become a global issue and contributes significantly to climate change, mainly due to the massive energy consumption in industry and the transportation sector. Emissions of harmful gases from burning fuels such as NO_x and $SO₂$ are the most significant sources of environmental pollution, which have negative impacts on the environment, such as the greenhouse effect, damage to the ozone layer, photochemical smog, and acid rain, and can interfere with the respiratory system in humans. This study utilizes hollow fiber membrane modules, which act as a reactor on the shell side of the membrane module and a gas distributor by the membrane fiber to remove NO_x and $SO₂$ spontaneously. The oxidant solutions used were a pair of hydrogen peroxide and sodium hydroxide (H_2O_2-NaOH) solutions, a pair of sodium chlorite and sodium hydroxide (NaClO₂-NaOH) solutions, and a pair of sodium chlorate and sodium hydroxide (NaClO₃-NaOH) solutions. Based on the results of experiments, $SO₂$ can be removed entirely in the process, while NO_x depends on the feed gas flow rate and the concentration of the oxidant solution used. H₂O₂ is the most effective oxidizing agent in removing NO_x and $SO₂$ because of its higher oxidative properties than NaCLO₂ and NaClO₃. The increase in feed gas flow rate resulted in a decrease in the efficiency of NO_x removal even though the NO_x mass transfer flux and NO_x loading increased. Meanwhile, an increase in the concentration of oxidants increases the efficiency of NO_x removal and mass transfer flux but decreases N_0 loading. Based on the experimental results, the maximum N_0 removal efficiency achieved by the oxidant solutions is 93.9, 91.1, and 88.3% for H_2O_2 -NaOH, NaClO₂-NaOH, and NaClO₃-NaOH, respectively.

Keywords: Climate change; Harmful gases; NO_x; Removal efficiency; SO₂

1. Introduction

Air pollution has become a global issue and contributes significantly to climate change due to the industry and transportation sector's massive energy consumption (Manisalidis *et al.*, 2020). In many countries, such as Indonesia, the emission of air pollutants from industrial and transportation activities is increasing due to the burning of fossil fuels. Emissions of harmful gases from the fuels burning process, such as NO_x and $SO₂$, are the most significant causes of environmental pollution, which have negative impacts on the environment, such as the greenhouse effect, damage to the ozone layer, photochemical

^{*}Corresponding author's email: sutrasno@che.ui.ac.id, Tel.: +62-21-7863516; Fax: +62-21-7863515 doi: 10.14716/ijtech.v15i1.6415

smog, and acid rain, and can interfere with the respiratory system in humans (Kartohardjono *et al.*, 2019; Ma *et al.*, 2019). One promising strategy to reduce exhaust gas pollutants such as NO^x and SO² is to control the source of the pollution (Zhu *et al.*, 2023). Removing NO_x and $SO₂$ in flue gases, such as those from coal burn boilers and marine diesel engines, is currently attracting much attention (Zhao *et al.*, 2022; Yan *et al.*, 2020). In 2020, analysis tools revealed a significant increase in the trend of NO_x and $SO₂$ emissions from Indonesian coal-fired power plants. The emissions for $SO₂$ and NO_x were reported as 798.5 kton/year and 120.02 kton/year, respectively (Sunarno, Purwanto, and Suryono, 2021). Considering the losses that SO_2 and NO_x gases can cause, the Indonesian Government has set various regulations related to the quality standard of the two gases, which is 200 µg/Nm³ or 0.16 and 0.076 ppm for NO and SO₂, respectively (Ministry of Environment and Forestry, 2019).

Several technologies have been developed to control pollutant emissions in many industries, including Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) for NO^x removal (Karamah *et al.*, 2021) and Flue Gas Desulfurization for SO2 removal (Sharma *et al.*, 2012). The conventional technology of SCR for NO^x and FGD for SO² has been widely adopted in various countries (Xu *et al.*, 2022). With increasing environmental awareness, the government and society need strict legislation and regulations to minimize NO^x and SO² emissions into the air (Jia *et al.*, 2022; Chen *et al.*, 2021). Although the removal rate is relatively high, several problems are faced, such as the catalyst used in the SCR system is quite expensive, must be replaced periodically, and requires a large area of land for its application (Guo *et al.*, 2018). Therefore, it has prompted the search for suitable alternative technologies to remove SO_2 and NO_x simultaneously. The simultaneous removal of $SO₂$ and NO_x through two different technologies needs high operational and investment costs because the process is becoming more complex (Zhao *et al.*, 2021b; Cheng and Zhang, 2018) and has a high working area (Zhao *et al.*, 2021a). NO^x and SO₂ are both acidic gases, but the solubility of NO_x in water is less than SO₂, so a different technique is needed to remove the two gases (Fang *et al.*, 2011).

Several approaches that can be used to remove NO_x and $SO₂$ simultaneously include the oxidation approach, the reduction approach, the absorption or adsorption approach, and the microbial approach (Chen *et al.*, 2021). Oxidation approaches include gas-liquid oxidation, gas-liquid oxidation, and gas-solid oxidation. The gas oxidation approach can use ozone (Sun *et al.*, 2013), oxygen (Atkinson *et al.*, 2004), the oxidant chlorine (Cl2) and chlorine dioxide (ClO2) (Mostafa *et al.*, 2018), and non-thermal plasma (Feng *et al.*, 2018). The gas-liquid oxidation approach, also known as the wet process, includes gas-liquid oxidation using H2O² (Kartohardjono *et al.*, 2023; Waclawek *et al.*, 2017), Peroxydisulfate/Peroxymonosulfate (Matzek and Carter, 2016), and NaClO/NaClO₂ (Zhitao *et al.*, 2019). Meanwhile, for the gas-solid oxidation approach through a photocatalytic process using catalysts such as TiO² (Su *et al.*, 2013), ZnO (Boyjoo *et al.*, 2017), CeO² (Tsang *et al.*, 2019), Bi2WO⁶ (Wang *et al.*, 2017), and BiOX (Cl, Br, I) (Xia *et al.*, 2015). The reduction approach includes gas-liquid reduction, gas-liquid reduction, and gas-solid reduction. Reduction of gases can use reductants such as CO (Makeev and Peskove, 2013), H² (Ge *et al.*, 2018), and CxHy (Pan *et al.*, 2015). The gas-liquid reduction can use ammonia, urea, and sodium sulfide (Na2S) (Mok and Lee, 2006), while gas-solid reduction can use carbon materials (Ma *et al.*, 2013). Absorption/adsorption approaches include Alkaline solution absorption (Sun *et al.*, 2015), complex absorption (Guo *et al.*, 2014), carbon-based adsorption (Xiong *et al.*, 2015), zeolite-based adsorption (Rezaei *et al.*, 2015), metal oxidebased adsorption (Vikrant *et al.*, 2017). Meanwhile, the microbial approach uses autotrophic micro-organisms under anoxic conditions (Xiao *et al.*, 2017).

The wet method approach is becoming more commonly applied to remove NO_x and $SO₂$ simultaneously because of its high efficiency and low cost (Johansson, Normann, and Andersson, 2021). The wet method includes wet scrubbing technology, widely used in $SO₂$ gas removal processes, and a bubble reactor to remove NO^x (Zhang *et al.*, 2021). Bubble reactors are multiphase reactors widely used in various industries, such as the chemical, petrochemical, and biochemical industries. These reactors play a pivotal role in numerous chemical processes encompassing oxidation, chlorination, alkylation, polymerization, and hydrogenation reactions. In these reactors, the feed gas is introduced into the system and then dispersed into bubbles as part of the technical process. Meanwhile, the liquid phase or liquid-solid suspension can be operated in batch mode or flowed in the direction/opposite direction of the gas flow so that contact or reaction will occur in the reactor column (Jakobsen, Linborg, and Dorao, 2005).

The wet method facilitates the removal of gaseous pollutants through contact between pollutant gas and oxidant liquid, which triggers a reaction between pollutant gas and oxidant liquid, becoming other species (Jin *et al.*, 2006). The main obstacle in removing NO^x gas through the wet method is that NO_x gas is a species that cannot be dissolved in the oxidant(Kang *et al.*, 2020). To address this issue, an oxidizing agent is introduced to convert the NO_x species into more soluble forms, such as hydrogen peroxide (H2O2), sodium chlorite (NaClO2), and sodium chlorate (NaClO3). At the same time, an alkaline solution such as NaOH can be applied to remove SO₂ (Purnawan *et al.*, 2021).

Membrane technology is a non-conventional technique that can simultaneously remove NO_x and $SO₂$. The membrane is a porous medium in the form of a thin film that can diffusely transfer certain gas compounds due to a driving force in the form of concentration toward the solvent through the membrane pore (Wang and Yu, 2017). A membrane contactor has several advantages, such as ease of operation and scale-up, low separation costs and energy consumption, and high efficiency (Kartohardjono *et al.*, 2020). This study utilized a hollow fiber membrane module (HFMM) that functions as a reactor and gas distributor to remove NO_x and $SO₂$ spontaneously. Using an HFMM as a bubble reactor enhances the area for gasliquid contact, providing a better removal reaction between NO_x and $SO₂$ gases with the applied oxidant solutions. The oxidant solutions used were a pair of H_2O_2 -NaOH solutions, a pair of NaClO₂-NaOH solutions, and a pair of NaClO₃-NaOH solutions.

The reactions between NO_x and $SO₂$ with a pair of $H₂O₂$ and NaOH solutions are presented in Equations (1) – (4) (Purnawan *et al.*, 2021; Sun, Zwolińska, and Chmielewski, 2016):

$$
NO + NO_2 + H_2O \leftrightarrow 2HNO_2 \tag{1}
$$

$$
HNO2 + H2O2 \rightarrow HNO3 + H2O
$$
 (2)

$$
SO_2 + H_2O_2 \rightarrow H_2SO_4 \tag{3}
$$

$$
HNO3 + H2SO4 + 3NaOH \rightarrow NaNO3 + Na2SO4 + 3H2O
$$
 (4)

The reactions that occur between NO_x and $SO₂$ with a pair of NaClO₂ and NaOH solutions are presented in Equations (5) – (8) (Zhao *et al.*, 2010; Chien, Chu, and Hsueh, 2003):

$$
NO + ClO2 \rightarrow NO2 + ClO-
$$
 (5)

$$
2NO2 + ClO2- + 2OH- \to 2NO3- + ClO- + H2O
$$
 (6)

$$
4ClO_2^- + 2H^+ \to 2ClO_2 + ClO_3^- + H_2O \tag{7}
$$

$$
2NaOH + SO2 \rightarrow H2O + Na2 SO3
$$
 (8)

Meanwhile, the reactions that occur between NO_x and $SO₂$ with a pair of NaClO₃ and NaOH solutions are presented in Equations (9) – (10) (Zhao *et al.*, 2020; Shi, Sun, and Cui, 2019):

$$
NaClO3 + 2NO + 2NaOH \rightarrow 2NaNO3 + NaCl + H2O
$$
 (9)

66 Effect of Oxidants in the Utilization of Polysulfone Hollow Fiber Membrane Module as Bubble Reactor for Simultaneously Removal of NO_x and $SO₂$

$$
2NaOH + SO2 \rightarrow H2O + Na2SO3
$$
 (10)

2. Methods

The CV Bandung Indonesia supplied the polysulfone hollow fiber membrane module consisting of 50 fibers used in the study. The analytic grade H2O2, NaClO2, NaClO3, and NaOH are provided by Merck Indonesia. Meanwhile, the feed gas in the form of a gas mixture of 600 ppm NO_x and 500 ppm $SO₂$ in nitrogen was provided by PT EIN Indonesia. The feed gas flow rate was regulated during the experiments using the CX Series mass flow controller, which can precisely control the gas flow rate. In addition, the concentration of gases entering and leaving the membrane was measured using an ECOM-D Gas analyzer.

The HFMM operates on a principle similar to that of a bubble reactor. The oxidant, which contains a pair of 200 mL solutions of H_2O_2 -NaOH, NaClO₂-NaOH, or NaClO₃-NaOH, is located on the shell side of the HFMM. The feed gas stream containing $SO₂$ and NO_x entered the membrane module through a silicone hose connection to the lumen fibers. A CX Series mass flow controller regulated the gas flow rates and made contact with oxidant solutions in the shell side of HFMM. The ECOM-D Gas Analyzer measured the NO_x and SO2 composition, as it leaving the membrane module.

The NO_x or $SO₂$ removal efficiency, flux, and gas loading were calculated by Equations (11-14) (Kartohardjono *et al.*, 2020):

$$
\%R = 100 \frac{c_{in} - c_{out}}{c_{in}} \tag{11}
$$

$$
J = \frac{Gas_{Abs}}{A_m} \tag{12}
$$

$$
Gas~loading = \frac{Gas_{Abs}}{c}
$$
 (13)

$$
C_{oxidant}
$$
\n
$$
G_{\text{S}} = (C - C - 1)Q_2 \frac{P}{P}
$$
\n(14)

$$
Gas_{Abs} = (C_{in} - C_{out})Q_G \frac{r}{RT}
$$
\n(14)

*C*in and *C*out are the NO^x or SO² concentrations in the feed gas and gas left from the HFMM, respectively. Meanwhile, *Gas*Abs, *A*m, *C*oxidant, *Q*G, *P*, *T*, and *R* are NO^x or SO² absorbed by the oxidant, membrane area, concentration of H_2O_2 , NaClO₂, or NaClO₃, feed gas flowrate, pressure, temperature, and ideal gas constant, respectively. The series of experimental equipment is shown in Figure 1. All experiments were conducted three times, and the experimental results' standard deviation was less than 6%.

Figure 1 Experimental equipment set up: 1. Feed gas tank, 2. Gas regulator, 3. Mass flow controler, 4. HFMM, 5. Gas Analyzer, 6. Data storage

3. Results and Discussion

This study used a feed gas with initial concentrations of NO_x and $SO₂$ of 600 ppm and 500 ppm, respectively. The oxidant solutions used were H2O2-NaOH solutions, NaClO2NaOH solutions, and NaClO₃-NaOH solutions with a concentration of 0.1M and 0.5M of 200 mL each. The gas flow in the experiments varied from 0.1 to 0.2 L/minute at a constant temperature and pressure of 28°C and 1 atm, respectively. The process of NO_x and SO_2 gases transfer through the HFMM during the experiment occurred in three stages: (i) gas diffusion to the inner surface of the fiber membrane; (ii) gas diffusion through the membrane pores to the outer surface of the membrane fibers; and (iii) gas absorption by the oxidant (Kartohardjono *et al.*, 2019).

For all experiments, the $SO₂$ removal efficiency is generally 100%, as it has a high solubility in water and better chemical reactivity (Liu, Shi, and Wang, 2022), so its presence in the feed gas will be examined to see the influence on NO_x removal. Figure 2 shows the impact of varying feed gas flow rates on NO_x gas's absorption efficiency (%R) with various oxidants.

As demonstrated in Figure 2, the removal efficiency of NO_x for all oxidants decreases with increasing feed gas flow. Increasing the feed gas flow causes an increase in the NO_x absorbed by the oxidant solutions, thereby increasing the efficiency of NO_x removal. However, increasing the feed gas flow led to less gas residence time in the HFMM, which caused a decrease in the removal efficiency of NOx. The decline in the removal efficiency of NO_x to the gas flow indicates that the effect of gas residence time in the membrane module is more influential than the increase in the adsorbed NO^x (Xu *et al.*, 2022). The removal efficiency of NO_x decreased from 93.9 to 81.3%, 91.1 to 79.5%, and 88.3 to 71.0% for H₂O₂-NaOH, NaClO2-NaOH, and NaClO3-NaOH adsorbents, respectively. Oxidant solutions containing H_2O_2 have the highest removal efficiency because of their higher oxidative properties than NaClO₂ and NaClO₃. The standard reduction potentials for H₂O₂, NaClO₂, and NaClO³ are 1.77, 0.76, and 0.62 Volt, respectively (Purnawan *et al.*, 2021; Lide, 2004). Previous studies showed a slight decrease in the removal efficiency of NO_x from about 99.8 to 98.8%, 99.4 to 98.6%, and 99.3 to 98.3% for H2O2-HNO3, NaClO2-NaOH, and NaClO3- NaOH oxidant pairs, respectively, under the same conditions as this study using feed gas containing 600 ppm NO_x without SO_2 and flow rates from 100 to 200 mL/min (Purnawan *et al.*, 2021). Thus, it is clear that the presence of SO₂ in the feed gas reduces the NO_x removal efficiency due to the influence of competition in consuming the oxidant solution (Kartohardjono *et al.*, 2023), as shown in Equations (3), (8), and (10). In addition, the wet method has the disadvantage that it can only be used indirectly if the exhaust gas temperature is high enough because the wet process is only adaptable to operate at ambient temperature.

Figure 2 NO^x removal efficiency, *R-NOx*, at various feed gas flow rates, *Q*^G

68 Effect of Oxidants in the Utilization of Polysulfone Hollow Fiber Membrane Module as Bubble Reactor for Simultaneously Removal of NO_x and $SO₂$

The NO_x mass transfer flux, as presented in Figure 3, rises with increasing the feed gas flow, indicating that increasing gas flow contributes to an increase in oxidant performance in absorbing NO_x passing through the membrane. With the feed gas flow increase from 100 CC/min to 200 CC/min, the NO_x mass transfer flux rose from 4.9 to 8.4×10^{-8} mmol/cm².s, 4.7 to 8.2 \times 10⁻⁸ mmol/cm².s, and 4.6 to 7.4 \times 10⁻⁸ mmol/cm2.s, for the H₂O₂-NaOH, NaClO₂-NaOH, and NaClO3-NaOH oxidant pairs, respectively. Increasing the gas flow enhances the absorbed NO_x , as presented in Figure 3, so it increases the flux in the end. A similar phenomenon also occurs for NO_x loading, the ratio between NO_x absorbed and the amount of oxidant (H₂O₂, NaClO₂, or NaClO₃), where the NO_x loading appears to increase with the higher feed gas flow rate, indicating that the feed gas flow also contributes to the rise in the uptake of NO_x by the oxidant solutions, as presented in Figure 4. When the feed flow raised from 100 to 200 CC/min, the NO_x loading increased from 0.0019 to 0.0033 mmol/mol.s, 0.0019 to 0.0032 mmol/mol.s, and 0.0018 to 0.0026 mmol/mol.s, for the H_2O_2 -NaOH, NaClO₂-NaOH, and NaClO₃-NaOH solvent pairs, respectively. In previous studies, under the same conditions using feed gas containing 600 ppm NO_x without $SO₂$ and flow rates from 100 to CC mL/min, the mass transfer flux increased from about 0.54 to 1.1 ×10−⁷ mmol/cm².s for all pairs of oxidants as their NO_x removal efficiency only slightly different. Meanwhile, NO_x loading increased from 0.002 to 0.004 mmol/mol.s for all pairs of oxidants (Purnawan *et al.*, 2021). It reveals that the NO^x mass transfer flux and NO^x loading using feed gas without SO_2 is higher than that in the feed gas with SO_2 due to the competition in oxidant consumption, as shown in Equations (5) , (6) , (11) , (14) , and (19) .

Figure 3 NO^x mass transfer flux, *J*, and NO^x absorbed at various feed gas flow rates, *Q*^G

Figure 4 NO^x Loading at various feed gas flow rates, *Q*^G

Figure 5 shows the effect of oxidant concentration on NO_x removal efficiency and mass transfer flux. The absorption efficiency of NO_x by the oxidant solution increases with raising the oxidant solution concentration. The higher the concentration of the oxidant solution, the more chemical compounds are available to react with NO_x ; thereby, it can increase the number of chemical reactions between NO_x and chemical compounds in the oxidant to boost the NO_x removal efficiency. The increase in NO_x mass transfer flux is also proportional to the increase in NO_x removal efficiency, as the feed gas flow rate used is the same for each concentration of the oxidant solution (Zhao *et al.*, 2020). NO^x removal efficiency and flux increased significantly at oxidant concentrations between 0.01 and 0.1 M while only slightly increased at oxidant concentrations greater than 0.1 M. The efficiency of NO_x removal is still relatively low, around 75.6, 88.3, and 91.6% for NaClO₃, NaClO₂, and H₂O₂, respectively, with a concentration of around 0.01 M. Hence, an increase in oxidant concentration up to 0.1 M still gives a significant increase. However, at 0.1 M oxidant concentration, the NO_x removal efficiency was relatively high, around 88.3, 91.1, and 93.5% for NaClO₃, NaClO₂, and H2O2, respectively. Hence, an increase in oxidant concentration above 0.1 M gave a not as sharp rise in NO^x removal efficiency as in the oxidant concentration area between 0.01 and 0.1 M. Similar findings were also reported in the previous studies using NO_x feed gas without SO_2 , where NO_x removal increased with increasing oxidant concentration using a PVDF HFMM consists of 40 fibers. The NO_x removal efficiency increased from 93.3 to 99.0%, 98.7 to 99.2%, and 98.9 to 99.7% with the raised of oxidant concentration from 0.05 to 0.25M, 0.01 to 0.05M, and 0.015 to 0.075 M, for the oxidants NaClO₃, NaClO₂, and H₂O₂, respectively (Purnawan *et al.*, 2021). Shi *et al.* reported a rise in NO^x removal from about 34.5 to 91.7% when the concentration of NaClO₃ solution as an oxidant increased from 0.005 to 0.1 M in a bubble column reactor (Shi, Sun, and Cui, 2019). Meanwhile, Zhitao *et al.* reported that increasing the NaClO² concentration from 0.005 to 0.15 M could improve the efficiency of the NO removal process with an initial concentration of 800 ppm through a cyclic scrubbing process from 62.5 to 85% (Zhitao *et al.*, 2019). It is seen that the presence of $SO₂$ in the feed gas affects reducing the efficiency of NO_x removal.

Figure 5 NO^x removal efficiency, R, and NO^x mass transfer flux, *J*, at various concentration of oxidant present in oxidant solutions, *C*Abs

 NO_x loading in the NO_x removal process using an oxidant solution is the ratio between the absorbed NO_x by the oxidant solution and the number of moles of oxidant in the oxidant solution. As presented in Figure 6, an increase in the concentration of oxidants in the NO_x removal process decreases gas loading because more oxidants are used, while the increase in NO^x absorbed is much smaller (Karamah *et al.*, 2021). These results indicate that a low

oxidant concentration is preferable because it provides a high NO_x loading. However, the desired NO_x removal target also influences the decision to determine the oxidant concentration in the oxidant solution used. In this study, the NO_x loading declined from around 0.015 to 0.0002 mmol/mol.s, 0.018 to 0.0002 mmol/mol.s, and 0.019 to 0.0002 mmol/mol.s for NaClO₃, NaClO₂, and H₂O₂, respectively, when the oxidant concentration in the oxidant solutions was increased from 0.01 to 1 M. Figure 6 also demonstrates that the three oxidants used have almost the same NO_x loading, so the images coincide. It indicates that the type of oxidant used does not have a significant effect on NO_x loading due to the insignificant difference in the amount of NO_x absorbed, as also reported previously (Purnawan *et al.*, 2021). Table 1 summarizes the experimental results at a feed gas flow rate of 100 mL/min and an oxidant concentration of 0.1 M.

Figure 6 NO_x loading at various concentration of oxidant

Table 1 The results of NO_x removal efficiency, flux, and NO_x loading at the concentration of the oxidant 0.1 M and feed gas flow rate of 100 mL/min

4. Conclusions

 $H₂O₂$, NaClO₂, and NaClO₃ are all capable of removing NO_x and SO₂ from flue gases, but their effectiveness depends on feed gas flow and concentration. All experimental results show that the efficiency of $SO₂$ removal is generally 100% due to its high solubility in water and better chemical reactivity. H_2O_2 is a highly effective oxidizing agent and has been shown to be capable of removing both NO_x and $SO₂$ because of its higher oxidative properties than NaClO² and NaClO3. Based on the experimental results, it can be seen that a rise in the feed gas flow rate decreases the N_{α} removal efficiency even though the N_{α} mass transfer flux and NO_x loading increase. Meanwhile, increasing the oxidant concentration increases NO_x removal efficiency and mass transfer flux but decreases NO_x loading. The three oxidant solutions used relatively have the same NO_x loading at the same oxidizing concentration.

Acknowledgments

The authors wish to acknowledge the funding of this research by The Directorate General of the Higher Education Republic of Indonesia through Universitas Indonesia with contract No. NKB 858 /UN2.RST/HKP.05.00/2022.

References

- Atkinson, R., Baulch, D., Cox, R. A., Crowley, J., Hampson, R., Hynes, R., Jenkin, M.E., Rossi, M.J., Troe, J., 2004. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume I-Gas Phase Reactions of Ox, HOx, NOx and SOx Species. *Atmospheric Chemistry and Physics,* Volume 4(6*),* pp. 1461–1738
- Boyjoo, Y., Sun, H., Liu, J., Pareek, V.K., Wang, S., 2017. A Review on Photocatalysis for Air Treatment: From Catalyst Development to Reactor Design. *Chemical Engineering Journal,* Volume 310*,* pp. 537–559
- Chen, R., Zhang, T., Guo, Y., Wang, J., Wei, J., Yu, Q., 2021. Recent Advances in Simultaneous Removal of SO² and NOx from Exhaust Gases: Removal Process, Mechanism and Kinetics. *Chemical Engineering Journal,* Volume 420*,* p. 127588
- Cheng, G., Zhang, C., 2018. Desulfurization and Denitrification Technologies of Coal-fired Flue Gas. *Polish Journal of Environmental Studies,* Volume 27(2), pp. 481–489
- Chien, T.W., Chu, H., Hsueh, H.T., 2003. Kinetic Study on Absorption of SO² and NO x with acidic NaClO² Solutions Using the Spraying Column. *Journal of Environmental Engineering,* Volume 129(11), pp. 967–974
- Fang, P., Cen, C., Tang, Z., Zhong, P., Chen, D., Chen, Z., 2011. Simultaneous Removal of SO² and NOx by Wet Scrubbing Using Urea Solution. *Chemical Engineering Journal*, Volume 168(1), pp. 52–59
- Feng, X., Liu, H., He, C., Shen, Z., Wang, T., 2018. Synergistic Effects and Mechanism of a Non-Thermal Plasma Catalysis System in Volatile Organic Compound Removal: a Review. *Catalysis Science & Technology,* Volume 8(4), pp. 936–954
- Ge, T., Zuo, C., Wei, L., Li, C. 2018. Sulfur Production from Smelter Off-Gas Using CO–H² Gas Mixture as The Reducing Agent Over Modified Fe/γ-Al2O³ Catalysts. *Chinese Journal of Chemical Engineering,* Volume 26(9), pp. 1920–1927
- Guo, L., Han, C., Zhang, S., Zhong, Q., Ding, J., Zhang, B., Zeng, Y., 2018. Enhancement Effects of O2− and OH Radicals on NOx Removal in the Presence of SO² by Using an O3/H2O² AOP System with Inadequate O³ (O3/NO Molar Ratio= 0.5). *Fuel,* Volume 233, pp. 769–777
- Guo, Q., He, Y., Sun, T., Wang, Y., Jia, J., 2014. Simultaneous Removal of NOx and SO² from Flue Gas Using Combined Na2SO3 Assisted Electrochemical Reduction and Direct Electrochemical Reduction. *Journal of Hazardous Materials,* Volume 276*,* pp. 371–376
- Jakobsen, H.A., Linborg, H., Dorao, C.A., 2005. Modelling of Bubble Column Reactors: Progress and Limitation. *Industrial and Engineering Chemistry Research*, Volume 44, pp. 5107–5151
- Jia, S., Pu, G., Gao, J., Yuan, C., 2022. Oxidation-Absorption Process for Simultaneous Removal of NOx and SO2 over Fe/Al2O3@SiO2 Using Vaporized H2O2. *Chemosphere,* Volume 291*,* p. 133047
- Jin, D.-S., Deshwal, B.-R., Park, Y.-S., Lee, H.-K., 2006. Simultaneous Removal of SO² And NO By Wet Scrubbing Using Aqueous Chlorine Dioxide Solution. *Journal of Hazardous Materials,* Volume 135(1-3), pp. 412–417
- Johansson, J., Normann, F., Andersson, K., 2021. Techno-Economic Evaluation of Co-Removal of NOx and SOx Species from Flue Gases via Enhanced Oxidation of NO by

ClO2—Case Studies of Implementation at a Pulp and Paper Mill, Waste-to-Heat Plant and a Cruise Ship. *Energies,* Volume 14(24), p. 8512

- Kang, M.S., Shin, J., Yu, T.U., Hwang, J., 2020. Simultaneous Removal of Gaseous NOx and SO2 by Gas-Phase Oxidation with Ozone and Wet Scrubbing with Sodium Hydroxide. *Chemical Engineering Journal,* Volume 381*,* p. 122601
- Karamah, E.F., Arbi, D.S., Bagas, I., Kartohardjono, S., 2021. Hollow Fiber Membrane Modules for NOx Removal using a Mixture of NaClO3 and NaOH Solutions in the Shell Side as Absorbents. *International Journal of Technology,* Volume 12(4), pp. 690–699
- Kartohardjono, S., Karamah, E.F., Talenta, G.N., Ghazali, T.A., Lau, W.J., 2023. The Simultaneously Removal of NOx and SO2 Processes through a Polysulfone Hollow Fiber Membrane Module. *International Journal of Technology,* Volume 14(3), pp. 576–583
- Kartohardjono, S., Merry, C., Rizky, M.S., Pratita, C.C., 2019. Nitrogen Oxide Reduction Through Absorbent Solutions Containing Nitric Acid and Hydrogen Peroxide in Hollow Fiber Membrane Modules. *Heliyon,* Volume 5(12), p. e02987
- Kartohardjono, S., Rizky, M.S., Karamah, E.F., Lau, W., 2020. The Effect of the Number of Fibers in Hollow Fiber Membrane Modules for NOx Absorption. *International Journal of Technology,* Volume 11(2), pp. 269–277
- Lide, D.R., 2004. *CRC Handbook of Chemistry and Physics*. Volume 85. CRC press
- Liu, Y., Shi, S., Wang, Z., 2022. A Novel Double Metal Ions-Double Oxidants Coactivation System for NO and SO² Simultaneous Removal. *Chemical Engineering Journal,* Volume 432*,* p. 134398
- Ma, C., Yi, H., Tang, X., Zhao, S., Yang, K., Song, L., Zhang, Y., Wang, Y. 2019. Improving Simultaneous Removal Efficiency of SO² and NOx from Flue Gas by Surface Modification of MgO with Organic Component. *Journal of Cleaner Production,* Volume 230, pp. 508– 517
- Ma, S.C., Yao, J., Ma, X., Gao, L., Guo, M., 2013. Removal of SO₂ and NO_x Using Microwave Swing Adsorption Over Activated Carbon Carried Catalyst. *Chemical Engineering & Technology,* Volume 36(7), pp. 1217–1224
- Makeev, A.G., Peskov, N.V., 2013. The Reduction of NO by CO Under Oxygen-Rich Conditions in a fixed-bed Catalytic Reactor: A Mathematical Model That Can Explain the Peculiar Behavior. *Applied Catalysis B: Environmental,* Volume 132*,* pp. 151–161
- Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E., 2020. Environmental and Health Impacts of Air Pollution: A Review. *Frontiers in Public Health*, Volume 8, p. 14
- Matzek, L.W., Carter, K.E., 2016. Activated Persulfate for Organic Chemical Degradation: A Review. *Chemosphere, 151*, pp. 178–188
- Ministry of Environment and Forestry, R.I., 2019. *Regulation of the Minister of Environment and Forestry Number P.15/MENLHK/SETJEN/KUM.1/4/2019 concerning Quality Standards for Thermal Power Generation Emissions*. Jakarta
- Mok, Y.S., Lee, H.-J., 2006. Removal Of Sulfur Dioxide and Nitrogen Oxides by Using Ozone Injection and Absorption–Reduction Technique. *Fuel Processing Technology,* Volume 87(7), pp. 591–597
- Mostafa, E., Reinsberg, P., Garcia-Segura, S., Baltruschat, H., 2018. Chlorine Species Evolution During Electrochlorination on Boron-Doped Diamond Anodes: In-Situ Electrogeneration of Cl2, Cl2O and ClO2. *Electrochimica Acta,* Volume 281*,* pp. 831–840
- Pan, H., Guo, Y., Jian, Y., He, C., 2015. Synergistic Effect of Non-Thermal Plasma on NOx Reduction by CH⁴ Over an In/H-BEA Catalyst At Low Temperatures. *Energy & Fuels,* Volume 29(8), pp. 5282–5289
- Purnawan, I., Kartohardjono, S., Wibowo, L., Ramadhani, A. F., Lau, W. J., Febriasari, A., 2021. Effect of Absorbents on NOx Removal through Polyvinylidene Fluoride (PVDF) Hollow

Fiber Membrane Modules. *International Journal of Chemical Engineering,* Volume 2021*,* pp. 1–8

- Rezaei, F., Rownaghi, A.A., Monjezi, S., Lively, R.P., Jones, C.W., 2015. SOx/NOx Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions. *Energy & Fuels,* Volume 29(9), pp. 5467–5486
- Sharma, A.K., Prasad, D., Acharya, S., Sharma, R., 2012. Utility and Application of FGD System (Flue Gas Desulphurization) In Chemical and Environmental Engineering. *International Journal of Chemical Engineering and Applications*, Volume 3(2), p. 129
- Shi, D., Sun, G., Cui, Y., 2019. Study on The Removal of NO from Flue Gas by Wet Scrubbing Using NaClO3. *Journal of the Serbian Chemical Society*, Volume 84(10), pp. 1183–1192
- Su, C., Ran, X., Hu, J., Shao, C., 2013. Photocatalytic Process of Simultaneous Desulfurization and Denitrification of Flue Gas by TiO2–Polyacrylonitrile Nanofibers. *Environmental Science & Technology,* Volume 47(20), pp. 11562–11568
- Sun, C., Zhao, N., Wang, H., Wu, Z., 2015. Simultaneous Absorption of NOx and SO² Using Magnesia Slurry Combined with Ozone Oxidation. *Energy & Fuels,* Volume 29(5), pp. 3276–3283
- Sun, W.-Y., Wang, Q.-Y., Ding, S.-l., Su, S.-J., 2013. Simultaneous Absorption of SO² and NOx with Pyrolusite Slurry Combined with Gas-Phase Oxidation of NO Using Ozone: Effect of Molar Ratio of O² (SO2+ 0.5 NOx) in Flue Gas. *Chemical Engineering Journal*, Volume 228*,* pp. 700–707
- Sun, Y., Zwolińska, E., Chmielewski, A.G., 2016. Abatement Technologies for High Concentrations of NOx and SO2 Removal from Exhaust Gases: A Review. *Critical Reviews in Environmental Science and Technology,* Volume 46(2), pp. 119–142
- Sunarno, S., Purwanto, P., Suryono, S., 2021. Trend Analysis of NOx and SO₂ Emissions in Indonesia from the Period of 1990-2015 using Data Analysis Tool. *Advances in Science, Technology and Engineering Systems Journal,* Volume 6(1), pp. 257–263
- Tsang, C.H.A., Li, K., Zeng, Y., Zhao, W., Zhang, T., Zhan, Y., Xie, R., Leung, D.Y.C., Huang, H., 2019. Titanium Oxide Based Photocatalytic Materials Development and Their Role of in The Air Pollutants Degradation: Overview and Forecast. *Environment International,* Volume 125*,* pp. 200–228
- Vikrant, K., Kumar, V., Kim, K.-H., Kukkar, D., 2017. Metal–Organic Frameworks (MOFs): Potential and Challenges for Capture and Abatement of Ammonia. *Journal of Materials Chemistry A,* Volume 5(44), pp. 22877–22896
- Wacławek, S., Lutze, H.V., Grübel, K., Padil, V.V., Černík, M., Dionysiou, D.D., 2017. Chemistry of Persulfates in Water and Wastewater Treatment: A Review. *Chemical Engineering Journal,* Volume 330*,* pp. 44–62
- Wang, L., Sun, B., Wang, W., Feng, L., Li, Q., Li, C. 2017. Modification of Bi2WO6 Composites with rGO for Enhanced Visible Light Driven NO Removal. *Asia‐Pacific Journal of Chemical Engineering,* Volume 12(1), pp. 121–127
- Wang, Y., Yu, X., 2017. Removal of NO Research in A Polypropylene Hollow Fiber Membrane Contactor*. In*: 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017), pp. 1015–1022
- Xia, D., Hu, L., He, C., Pan, W., Yang, T., Yang, Y., Shu, D., 2015. Simultaneous Photocatalytic Elimination of Gaseous NO and SO² in a BiOI/Al2O3-Padded Trickling Scrubber Under Visible Light. *Chemical Engineering Journal,* Volume 279*,* pp. 929–938
- Xiao, C., Ma, Y., Ji, D., Zang, L., 2017. Review of Desulfurization Process for Biogas Purification*. In*: IOP Conference Series: Earth and Environmental Science, Volume 100, p. 012177
- Xiong, Y., Tang, C., Yao, X., Zhang, L., Li, L., Wang, X., Deng, Y., Gao, F., Dong, L. 2015. Effect Of Metal Ions Doping (M= Ti⁴⁺, Sn⁴⁺) on The Catalytic Performance of MnOx/CeO₂ Catalyst for Low Temperature Selective Catalytic Reduction of NO with NH3. *Applied Catalysis A: General,* Volume 495*,* 206–216
- Xu, X.-J., Wu, Y.-N., Xiao, Q.-Y., Xie, P., Ren, N.-Q., Yuan, Y.-X., Lee, D.J., Chen, C., 2022. Simultaneous Removal of NOx and SO² from Flue Gas in an Integrated FGD-CABR System by Sulfur Cycling-Mediated Fe (II) EDTA Regeneration. *Environmental Research,* Volume 205*,* p. 112541
- Yan, Y.-G., Mao, Z.-J., Luo, J.-J., Du, R.-P., Lin, J.-X., 2020. Simultaneous Removal of SO2, NOx and Hg0 by O³ Oxidation Integrated with Bio-Charcoal Adsorption. *Journal of Fuel Chemistry and Technology,* Volume 48*(*12), pp. 1452–1460
- Zhang, Z., Zhou, S., Xi, H., Shreka, M., 2021. A Prospective Absorption System for Marine NOx Removal from Simulated Gas Using Na2SO3/urea Composite Absorbents in Bubble Reactor. *Fuel,* Volume 288*,* p. 119709
- Zhao, J., Wei, Q., Bi, D., Liu, L., Wang, S., Ren, X., 2022. A Brand New Two-Phase Wet Oxidation Absorption System for The Simultaneous Removal of SO² and NOx From Simulated Marine Exhaust Gas. *Chemosphere,* Volume 307, p. 135830
- Zhao, K., Sun, X., Wang, C., Song, X., Wang, F., Li, K., Ning, P., 2021a. Supported Catalysts for Simultaneous Removal of SO2, NOx, and Hg0 from Industrial Exhaust Gases: A Review. *Chinese Chemical Letters,* Volume 32(10), pp. 2963–2974
- Zhao, L., Sun, Y., Chmielewski, A.G., Pawelec, A., Bułka, S., 2020. NO Oxidation with NaClO, NaClO₂, and NaClO₃ Solution Using Electron Beam and A One-Stage Absorption System. *Plasma Chemistry and Plasma Processing,* Volume 40*,* pp. 433–447
- Zhao, M., Xue, P., Liu, J., Liao, J., Guo, J., 2021b. A Review of Removing SO₂ and NO_x by Wet Scrubbing. *Sustainable Energy Technologies and Assessments,* Volume 47*,* p. 101451
- Zhao, Y., Guo, T.-X., Chen, Z.-Y., Du, Y.-R., 2010. Simultaneous Removal of SO₂ and NO Using M/NaClO² Complex Absorbent. *Chemical Engineering Journal,* Volume 160*(*1), pp. 42– 47
- Zhitao, H., Yu, G., Shaolong, Y., Jingming, D., Xinxiang, P., Tian, L., Liguo, S., Zhijun, Y., Deping, S., Kaixuan, N., 2019. NO Removal from Simulated Diesel Engine Exhaust Gas by Cyclic Scrubbing Using NaClO² Solution in A Rotating Packed Bed Reactor. *Journal of Chemistry,* Volume 2019, p. 3159524
- Zhu, C., Ru, J., Gao, S., Li, C. 2023. The Simultaneous Removal of NOx and SO² from Flue Gas by Direct Injection of Sorbents in Furnace of Waste Incinerator. *Fuel,* Volume 333*,* p. 126464